FISEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

In boar sperm capacitation L-lactate and succinate, but not pyruvate and citrate, contribute to the mitochondrial membrane potential increase as monitored via safranine O fluorescence

Gianluca Paventi ^a, Christian Lessard ^b, Janice L. Bailey ^{b, *}, Salvatore Passarella ^{a, *}

- ^a Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, via de Sanctis, Campobasso, Italy
- ^b Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada

ARTICLE INFO

Article history: Received 16 April 2015 Available online 5 May 2015

Keywords:
Mitochondria
L-lactate
Mitochondrial membrane potential
Capacitation
Boar sperm
Safranine O

ABSTRACT

Having ascertained using JC-1 as a probe that, in distinction with the controls, during capacitation boar sperm maintains high mitochondrial membrane potential ($\Delta\Psi$), to gain some insight into the role of mitochondria in capacitation, we monitored $\Delta\Psi$ generation due to externally added metabolites either in hypotonically-treated spermatozoa (HTS) or in intact cells by using safranine O as a probe. During capacitation, the addition to HTS of L-lactate and succinate but not those of pyruvate, citrate and ascorbate + TMPD resulted in increase of $\Delta\Psi$ generation. Accordingly, the addition of L-lactate and succinate, but not that of citrate, to intact sperm resulted in $\Delta\Psi$ generation increased in capacitation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

One of the outstanding questions in animal reproduction concerns the mechanism by which mammalian spermatozoa manage their energy levels and the role of mitochondria as regulators of sperm functions, including capacitation [1-3], the multifaceted maturation process rendering spermatozoa competent to fertilize [4], where an increase of the mitochondrial membrane potential $(\Delta \Psi)$ occurs [5–7]. In sperm ATP synthesis can occur in mitochondria, via oxidative phosphorylation [see 8], but also in glycolysis; accordingly multiple glycolytic enzymes are present along the mouse sperm flagellum, likely to support sperm motility [9]. Importantly, the ATP source appears to be species-specific in spermatozoa due the conditions in the oviduct of the conspecific female [8]. In particular in pig, even if citrate, which inhibits phosphofructokinase I [10], is abundant in seminal plasma, ATP production was reported to depend on glycolytic flux [11]. In this regard, the existence of a mitochondrial L-lactate dehydrogenase (m-L-LDH) was definitively confirmed in mammalian, plant and yeast mitochondria [12–14], being its existence finally recognized by inclusion

E-mail addresses: janice.bailey@fsaa.ulaval.ca (J.L. Bailey), passarel@unimol.it (S. Passarella).

of m-L-LDH in the Mitocarta (http://www.broadinstitute.org/pubs/MitoCarta/index.html), but despite the occurrence also in sperm of an m-L-LDH [see for Ref. [12]], whether and how L-lactate and other metabolites present in seminal plasma play a role in sperm energy production, especially in capacitation, remains to be fully established [15].

We investigate this issue by monitoring whether and how $\Delta\Psi$ generation, used as an indicator of the mitochondrial function, changes in capacitation as a result of the addition of a variety of metabolites to either cell homogenate containing intact mitochondria or intact cells.

2. Materials and methods

2.1. Chemicals and culture media

All chemicals from Sigma Chemical Co (St. Luis, Mo) were of purest grade available and were used as Tris salts at pH 7.0–7.4 adjusted with Tris or HCl.

The non capacitating medium (NCM) was composed of 2.7 mM KCl, 1.2 mM $\rm KH_2PO_4$, 8.1 mM $\rm Na_2HPO_4$, 95 mM NaCl, 5.55 mM glucose, and 2 mM pyruvate (pH 7.4). In the capacitating medium (CM) 25 mM $\rm NaHCO_3$, 5 mM $\rm CaCl_2$, 0.4% BSA (type V, free of fatty acids) were also present.

^{*} Corresponding authors.

2.2. Sperm preparation

Sperm preparation was as in Ref. [16]. Briefly, freshly ejaculated semen was collected from fertile boars and transported to the laboratory at $16^{\circ}\text{C}-18~^{\circ}\text{C}$ within 30 min. The semen was divided into 2 equal fractions and centrifuged (10 min, $270 \times g$, $25~^{\circ}\text{C}$). The first fraction was suspended in CM (40×10^6 sperm/ml) to induce capacitation, and the second portion in NCM (40×10^6 sperm/ml) was used as a control. Sperm were then incubated at $38.5~^{\circ}\text{C}$ in a humidified 5% CO₂ atmosphere.

2.3. Hypotonic treatment of sperm

Hypotonically-treated spermatozoa (HTS) was prepared as in Ref. [17] from fresh samples, incubated either in CM or NCM; briefly, samples were washed three times (800 g for 10 min at room temperature) in isotonic salt medium A (0.2% BSA, 113 mM KCl, 12.5 mM KH₂PO₄, 2.5 mM K₂HPO₄, 3 mM MgCl₂, 0.4 mM EDTA and 20 mM Tris—HCl pH 7.4). Spermatozoa were then subjected to hypotonic treatment by keeping cells in ice-chilled hypotonic medium (0.2% BSA, 7.74 mM K₂HPO₄, 2.24 mM KH₂PO₄ pH 7.4) for 1.5 h. Sperm were then washed three times using medium A, as above. L-LDH activity was checked by assaying photometrically, by means of Varioscan spectrofluorimeter, NADH oxidation ($\epsilon_{334} = 6.22 \, \text{mM}^{-1} \times \text{cm}^{-1}$) due to pyruvate addition to either intact sperm or HTS.

2.4. $\Delta\Psi$ measurements

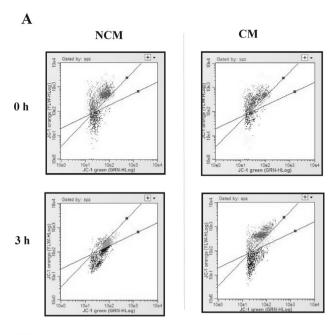
2.4.1. Flow cytometry

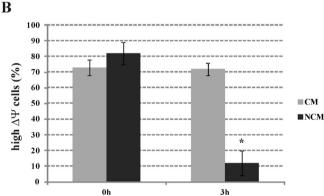
Sperm parameters of intact sperm incubated in either CM or NCM were assayed via flow cytometry using JC-1 by means of the Guava EasyCyte Cytometry System (IMV International Technologies, Maple Grove, MN). Briefly, boar spermatozoa (35 \times 10 6 cells/ml) incubated for either few seconds or 3 h, in either CM or NCM were stained with JC-1 (Cat. No. 4500-0250, MitoPotential Kit, IMV), and measured using manufacturer's settings. 2000 events for each sample in triplicate were analyzed by the Guava Mitopotential software (Billerica, MA). Debris was excluded from acquired events.

2.4.2. Fluorimetric safranine O assay

 $\Delta\Psi$ generation by mitochondria in HTS was monitored at 25 °C essentially as in Ref. [18], by measuring safranine O fluorescence changes (λ ex/em 520/570 nm) using a Varioscan spectrofluorimeter. 150 \times 10⁶ HTS were incubated in 2 ml of isotonic medium in the presence of 1.5 μ M safranine O, at a ratio of 20 nmol/10⁹ cells.

2.4.3. Statistical analysis


Statistical analysis was performed according to the Student's t test.


3. Results

In our experimental protocol freshly ejaculated boar spermatozoa, incubated as in Ref. [19] for 3 h either in NCM or CM, were checked for the occurrence of *in vitro* capacitation. This was confirmed by using the chlortetracycline (CTC) assay, by tyrosine phosphoprotein complex p32 assay [16,19] and by computer-assisted sperm analysis (CASA) motility measurements as in Ref. [20].

To confirm that capacitation results in a cell population retaining high $\Delta\Psi$ we incubated cells in either CM or NCM for few seconds (0 time) or 3 h (time at which capacitation peaks) and their energy status was assessed by flow cytometry using JC-1 as a probe [21] (Fig. 1A). At 0 time about 70% of all the cell population

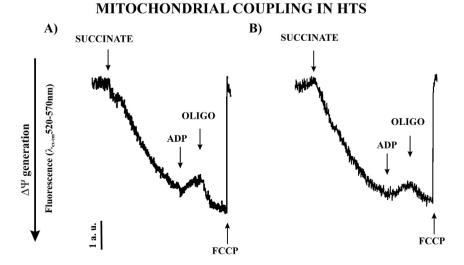
ΔΨ IN BOAR SPERMATOZOA

Fig. 1. Flow cytometry determination of mitochondrial $\Delta\Psi$ in boar sperm capacitation. (A) Boar spermatozoa (35 × 10⁶ cell) incubated for few seconds (0 h) or for three hours (3 h) in either capacitation (CM) or non capacitation (NCM) medium were assessed by flow cytometry by using JC-1 as a fluorimetric probe (for details see Section 2.4). Events in region upper/left represent spermatozoa with high mitochondrial $\Delta\Psi$; events in region lower/right represent spermatozoa with low $\Delta\Psi$; and events in region upper/right represent spermatozoa with depolarizing mitochondria. (B) Mean value (\pm SD) of % of cells showing high $\Delta\Psi$ obtained in three different experiments carried out as in A. * significant difference according to Student's t test (P < 0.05).

exhibited high $\Delta\Psi$ mitochondria as indicated by JC-1 response; at 3 h time, capacitated sample maintained their high $\Delta\Psi$ population in distinction with not capacitated cells. Such a distinction proved to be significantly different (Fig. 1B).

In a series of control experiments, not shown in detail, spermatozoa proved to be intact and free of seminal plasma contamination since no L-LDH activity (present in seminal plasma [22]) were released as shown by the lack of NADH oxidation due to the addition of pyruvate to sperm cell incubated in the presence of NADH. As a result of hypotonic treatment, an homogenate was obtained containing intact mitochondria, as shown by the lack of NADH oxidation which occurred only after the addition of Triton X-100 which dissolves mitochondria.

Thus, as done in mammalian [23], yeast [24] and plant [18] mitochondria, use was made of safranine O, as a fluorimetric probe, to check whether $\Delta\Psi$ generation could be continuously


monitored in HTS, which mirrors isolated functional mitochondria [25] (Fig. 2). For a validation experiment, mitochondrial function was checked in HTS incubated for few seconds in either CM (Fig. 2 trace a) or NCM (Fig. 2 trace b) under conditions in which capacitation is still lacking: in both cases the addition of succinate (5 mM) induced a rapid $\Delta\Psi$ increase [18], as shown by the decrease in safranine O fluorescence, occurring essentially at the same rate, but with minor variation likely due to the different medium composition. As expected, the further addition of ADP (1 mM) caused $\Delta\Psi$ decrease since $\Delta\Psi$ is used to drive both ATP synthesis and ADP/ATP exchange via the adenine nucleotide translocator in an electrophoretic manner. The sequential addition of oligomycin (2 µg), used to block proton influx across ATP synthase, completely restored $\Delta\Psi$. Finally, $\Delta\Psi$ was rapidly abolished by the addition of the uncoupler FCCP (1 µM).

Since glycolysis occurs in boar sperm [11], since L-lactate is present in the seminal plasma [26] and can be metabolized by boar spermatozoa [27] and in the light of [28,29] in which L-lactate mitochondrial metabolism is not considered, we compared pyruvate and L-lactate with respect to their capability to generate $\Delta\Psi$ in capacitation. HTS were prepared from sperm incubated in CM for either few seconds (0 h-HTS), used as a control, or 3 h (3 h-HTS) (Fig. 3A); Externally added pyruvate (1 mM) caused a little $\Delta\Psi$ generation both in 0 h-HTS and in 3 h-HTS; L-lactate addition (5 mM) resulted in $\Delta\Psi$ generation at a rate much higher with respect to that measured for pyruvate, already at the beginning of capacitation time. In capacitation the rate of generation and the extent of $\Delta\Psi$ due to L-lactate were about 150% of those of the controls. Increase of $\Delta\Psi$ generation during capacitation was also found in the presence of malate (5 mM) either in the absence or presence of pyruvate (1 mM) and of glutamate plus malate (5 mM each, not shown), which can reduce the intramitochondrial NAD(P)⁺. In parallel either citrate or succinate (5 mM each), both present in the seminal plasma [26,30,31], were also investigated. A negligible $\Delta\Psi$ generation was found as a result of citrate addition to either 0 h- or 3 h-HTS, whereas the addition of succinate resulted in $\Delta\Psi$ generation with a rate increased in capacitation up to about 160%. Contrarily, when ascorbate (5 mM) plus TMPD (1 mM) were used as a substrate pair of cytochrome c oxidase, no change of $\Delta\Psi$ generation was found during capacitation. $\Delta\Psi$ generation due to ascorbate plus TMPD proved to be insensitive to externally added cytochrome c (150 μM), this confirming that in both 0 h- and 3 h-HTS the outer mitochondrial membrane remains intact. The mean increase values of both rate and extent occurring in capacitation were reported in Fig. 3B.

In the light of result of Fig. 3A, in a first series of experiments we confirmed that $\Delta\Psi$ generation can also occur in intact sperm from either L-lactate or succinate taken up from the extracellular phase which mirrors the extracellular fluid (Fig. 3C). Externally added L-Lactate (5 mM) proved to cause $\Delta\Psi$ increase when added to intact boar sperm incubated for few seconds in CM (0 h). Negligible $\Delta\Psi$ generation was found due to the addition of citrate (5 mM), contrarily, succinate (5 mM) resulted in $\Delta\Psi$ generation (Fig. 3C). About 70 and 90% increase of $\Delta\Psi$ rate of generation was found in capacitation (3 h) due to L-lactate and succinate addition, respectively.

4. Discussion

In distinction with a variety of capacitation events including hyperactivation, changes in the membrane fluidity, protein tyrosine phosphorylation [see for Ref. [32]], as remarked in Ref. [3] the mitochondrial function in capacitation was poorly investigated: in particular the metabolites which drive the mitochondrial energy production remained unknown. Thus, the goal of this paper was to gain a first insight into the mechanism by which mitochondrial $\Delta\Psi$ increases in boar sperm capacitation [5,6] and in particular to ascertain whether L-lactate, present in the seminal plasma with citrate, succinate, glucose and fructose [26,31,33], can contribute to mitochondrial extra energy production. We used $\Delta\Psi$ since it mirrors the total mitochondrial potential energy to be used in the cell function including ATP synthesis, metabolite traffic across the mitochondrial membranes and thermogenesis. In this regard, we first resorted to a safranine O based method which, in distinction with JC-1, has the added dimension to allow for monitoring continuously $\Delta\Psi$ generation. Indeed, use of JC-1 and similar probes does not allow for investigation of the mechanism by which $\Delta\Psi$ is generated given that these probes cannot monitor the fast changes

Fig. 2. Measurements of $\Delta\Psi$ generation by coupled mitochondria in HTS via safranine O fluorescence. HTS (150 × 10⁶ cells) from samples incubated for 5 s in either CM (A) or NCM (B) (see Section 2.4) were incubated in medium A added with 1.5 μM safranine O and fluorescence was continuously monitored ($\lambda_{ex}/\lambda_{em}$ 520/570 nm). At the arrows 5 mM succinate, 1 mM ADP, 2 μg oligomycin, 1 μM FCCP were added. a.u.: arbitrary units.

1 min

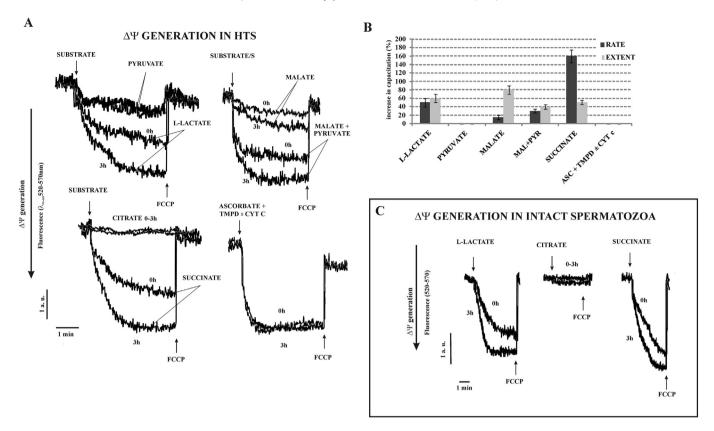
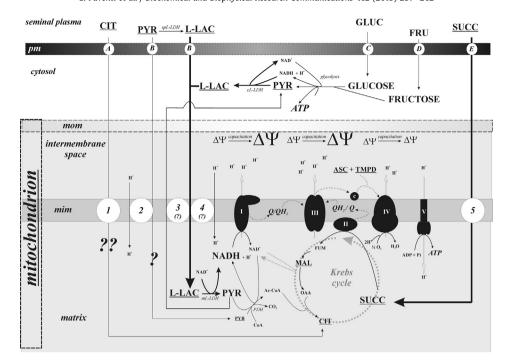



Fig. 3. The addition of certain metabolites to either HTS (A,B) or intact boar spermatozoa (C) results in $\Delta\Psi$ generation either in the absence or in the presence of capacitation. (A) HTS (150 × 10⁶ cells each) obtained from samples incubated in CM for either few seconds (0 h) or 3 h were incubated in medium A (see Section 2.3) in the presence of 1.5 μM safranine O and fluorescence was continuously monitored ($\lambda_{ex}/\lambda_{em}$ 520/570 nm). At the arrows the following additions were made: either 1 mM pyruvate or 5 mM L-lactate, either 5 mM malate alone, or 1 mM malate plus 5 mM pyruvate, either 5 mM citrate or 5 mM succinate (added in the presence of 2 μg rotenone), 5 mM ascorbate plus 1 mM TMPD (added in the presence of 2 μg antimycin A) either in the presence or in the absence of 150 μM cytochrome c, and 1 μM FCCP. (B) Mean values (\pm SD) of $\Delta\Psi$ generation increase occurring in HTS in capacitation, obtained in three different experiments carried out as in A, are reported. Controls were both rate and extent values obtained for each substrate/substrate pair at 0 h. (C) Intact boar sperm (150 × 10⁶ cells), previously incubated in CM for few seconds (0 h) or for the time required for capacitation to occur (3 h), were incubated in medium A added with 1.5 μM safranine O and fluorescence was continuously monitored ($\lambda_{ex}/\lambda_{em}$ 520/570 nm). At the arrows additions were made at the indicated concentrations: 5 mM Llactate, 5 mM citrate, 5 mM succinate and 1 μM FCCP. a.u.: arbitrary units.

in mitochondrial $\Delta\Psi$ occurring as a result of substrate addition [see also 34]. We confirm here our original finding [5] that capacitation results in the increased population retaining high $\Delta\Psi$ in capacitated sperm (Fig. 1) and show that intact coupled mitochondria (Fig. 2) exhibit a tremendous increased capability to generate $\Delta\Psi$ during capacitation, which counterbalances the $\Delta\Psi$ decrease found in the control, by oxidizing L-lactate and succinate, but not citrate and pyruvate (Fig. 3). Our finding that pyruvate is a poor mitochondrial energy substrate is not unique: notice that pyruvate as the sole substrate was metabolized very slowly by bovine [35] and boar spermatozoa mitochondria [27]. On the other hand, in Ref. [3] it was proposed that the joined operation of the cytosolic and mitochondrial L-LDH and of the lactate carrier/s [12] could allow for both the progress of glycolysis by the production of NAD⁺ and the progress of mitochondrial energy production by the transport of reducing equivalents from the cytosol into mitochondria. However here we show that L-lactate, but not pyruvate, is a major mitochondrial energy substrate in capacitation, perhaps as a final glycolysis product as proposed in neurons [36]. The failure of externally added citrate to cause $\Delta\Psi$ generation both in HTS and in intact cells is apparently in contrast with [37] where it was shown that the incubation of boar spermatozoa with 10 mM citrate resulted in carbon dioxide production and L-lactate release in the extracellular space. On the other hand, the failure of citrate to sustain high ATP levels and sperm motility was also found [see 29], thus we are forced to propose that such a difference depends on different experimental conditions.

Contrarily, L-lactate, as well as succinate which is present in seminal plasma and can enter both cell and mitochondria [30–38], cause $\Delta\Psi$ generation in both HTS and intact cells, with an increase during capacitation. At present the mechanism by which the rate of $\Delta\Psi$ increases in capacitation must remain a matter of speculation. $\Delta\Psi$ generation due to the addition of respiratory substrates to coupled mitochondria derives from a process including a variety of steps: i. uptake of the substrates mostly in a carrier mediated manner, ii. their oxidation by specific dehydrogenases located inside mitochondria, iii. electron flow along the respiratory chain accompanied by proton pumping from the matrix to the intermembrane space to generate $\Delta\Psi$. In experiments of Fig. 3C the possible of modification of plasma membrane permeability should also be taken in consideration. Use of a variety of non-penetrant compounds (which can affect only transport processes) and/or of specific inhibitors of any step of capacitation is needed to gain some insight into this issue. Notice that since capacitation is related to the controlled generation of reactive oxygen species (ROS) [39-41], L-lactate might be also involved in ROS generation due to the existence of the putative Llactate oxidase [42].

Interestingly, cytochrome c oxidase, which under certain conditions regulates reducing equivalent flux along respiratory chain [for refs see Ref. [43]], and whose stimulation by He—Ne laser was correlated with energy charge increase in spermatozoa [44,45], is not responsible for $\Delta\Psi$ increase since no difference in the rate of $\Delta\Psi$ generation due to ascorbate + TMPD was found.

Scheme 1. $\Delta\Psi$ increase during boar sperm capacitation. Boar sperm cells convert glucose (GLUC) and/or fructose (FRU), entered the cell via their specific transporter (C and D respectively), to pyruvate (PYR) with ATP production. PYR, which poorly enters mitochondria via its own carrier (2), is reduced to L-lactate (L-LAC) due to the cytosolic L-LDH (cL-LDH). The newly synthesized L-lactate together with L-lactate taken up, via the monocarboxylate transporter (*B*), from seminal plasma where is formed via the seminal L-LDH (spL-LDH), enters mitochondria via a the putative carrier L-LAC/H+ symporter (4). Succinate (SUCC), which enters spermatozoa in a carried mediated manner (*E*), is assumed to enter mitochondria via the dicarboxylate carrier (5). Sperm mitochondria can oxidize L-lactate (via the mL-LDH) and succinate (via succinate dehydrogenase - Complex II) thus reducing intramitochondrial NAD+ and FAD respectively. The electron flow along the respiratory chain caused by the oxidation of NADH by complex I and of FADH₂ results is $\Delta\Psi$ generation which increases in capacitation. Contrarily, no $\Delta\Psi$ generation increase in capacitation occurs due to complex IV. Both in controls and in capacitated samples, PYR and citrate (CIT) are poorly transported in the mitochondria via (2) and tricarboxylate carrier (1), respectively. Moreover, L-LAC/PYR shuttle, due to the putative L-LAC/PYR antiporter (3) and to both c- and m-L-LDH, could occur in boar sperm. Abbreviations: pm: plasma membrane; mom: mitochondrial outer membrane; mim: mitochondrial inner membrane; ASC: ascorbate; TMPD: $N_1N_1N_1N_2$ -Tetramethyl-p-phenylenediamine; Q/QH_2 : oxidized and reduced form of Coenzyme Q, respectively; c: cytochrome c; Ac-CoA: acetyl-coenzyme A; CoA: coenzyme A; FUM: fumarate; MAL: L-malate; OAA: oxaloacetate; PDH: pyruvate dehydrogenase complex. Substrates checked in this paper are reported underlined.

The possible scenario for energy metabolism in capacitation as derived from Refs. [11,38,46] and this work is summarized in Scheme 1.

Conflict of interest

The authors declare that there are no conflicts of interest.

Funding

Supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant) to JLB.

Acknowledgments

We thank the Centre d'insemination porcine du Quebec for supplying the boar semen.

Transparency document

Transparency document related to this article can be found online at http://dx.doi.org/10.1016/j.bbrc.2015.04.128.

References

[1] S. Shivaji, V. Kota, A.B. Siva, The role of mitochondrial protein in sperm capacitation, J. Reprod. Immunol. 83 (2009) 14–18, http://dx.doi.org/10.1016/ j.jri.2009.08.009.

- [2] S. Rajender, P. Rahul, A.A. Mahdi, Mitochondria, spermatogenesis and male infertility, Mitochondrion 10 (2010) 419–428, http://dx.doi.org/10.1016/ j.mito.2010.05.015.
- [3] A. Ferramosca, V. Zara, Bioenergetics of mammalian sperm capacitation, Biomed. Res. Int. 2014 (2014) 90295, http://dx.doi.org/10.1155/2014/902953.
- [4] C.R. Austin, The capacitation of the mammalian sperm, Nature 170 (1952) 326.
 [5] G. Paventi, C. Lessard, G. Fasolino, et al., Capacitation increases mitochondrial membrane potential in boar sperm. J. Androl S (Suppl.) (2010) 64–65.
- [6] L. Ramiò-Lluch, J.M. Fernàndez-Novell, A. Pena, et al., 'In vitro' capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm: evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure, Reprod. Dom. Anim. 46 (2011) 664–673, http://dx.doi.org/10.1111/j.1439-0531.2010.01775 x
- [7] L. Ramió-Lluch, M. Yeste, J.M. Fernández-Novell, et al., Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels, Reprod. Fertil. Dev. 26 (2014) 883–897, http:// dx.doi.org/10.1071/RD13145.
- [8] B.T. Storey, Mammalian sperm metabolism: oxygen and sugar, friend and foe, Int. J. Dev. Biol. 52 (2008) 427–437, http://dx.doi.org/10.1387/ijdb.072522bs.
- [9] M. Krisfalusi, K. Miki, P.L. Magyar, D.A. O'Brien, Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa, Biol. Reprod. 75 (2006) 270–278, http://dx.doi.org/10.1095/biolreprod.105.049684.
 [10] G. Kamp, H. Schmidt, H. Stypa, et al., Regulatory properties of 6-
- [10] G. Kamp, H. Schmidt, H. Stypa, et al., Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa, Reproduction 133 (2007) 29–40, http://dx.doi.org/10.1530/REP-06-0082.
- [11] S. Marin, K. Chiang, S. Bassilian, et al., Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization, FEBS Lett. 554 (2003) 342–346, http://dx.doi.org/10.1016/S0014-5793(03)01185-2.
- [12] S. Passarella, L. de Bari, D. Valenti, et al., Mitochondria and L-lactate meta-bolism, FEBS Lett. 582 (2008) 3569–3576, http://dx.doi.org/10.1016/i.febslet.2008.09.042.
- [13] G.A. Brooks, Cell-cell and intracellular lactate shuttles, J. Physiol. 587 (2009) 5591–5600, http://dx.doi.org/10.1113/jphysiol.2009.178350.
- [14] S. Passarella, G. Paventi, R. Pizzuto, The mitochondrial L-lactate dehydrogenase affair, Front. Neurosci. 8 (2014) 407, http://dx.doi.org/10.3389/fnins.2014.00407.

- [15] A. Amaral, B. Lourenço, M. Marques, J. Ramalho-Santos, Mitochondria functionality and sperm quality, Reproduction 146 (2013) 163–174, http://dx.doi.org/10.1530/REP-13-0178.
- [16] S. Tardif, C. Dubé, S. Chevalier, J.L. Bailey, Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins, Biol. Reprod. 65 (2001) 784–792.
- [17] E. Keyhani, B.T. Storey, Energy conservation capacity and morphological integrity of mitochondria in hypotonically treated rabbit epididymal spermatozoa, Biochim. Biophys. Acta 305 (1973) 557–569, http://dx.doi.org/ 10.1016/0005-2728(73)90075-3.
- [18] G. Paventi, D. Pastore, A. Bobba, et al., Plant uncoupling protein in mitochondria from aged-dehydrated slices of Jerusalem artichoke tubers becomes sensitive to superoxide and to hydrogen peroxide without increase in protein level, Biochimie 88 (2006) 179–188, http://dx.doi.org/10.1016/ j.biochi.2005.07.009.
- [19] C. Dubé, P. Leclerc, T. Baba, et al., The proacrosin binding protein, sp32, is tyrosine phosphorylated during capacitation of pig sperm, J. Androl. 26 (2005) 519–528. http://dx.doi.org/10.2164/jandrol.04163.
- [20] C. Campagna, C. Guillemette, P. Ayotte, J.L. Bailey, Effects of an environmentally relevant organochlorine mixture and a metabolized extract of this mixture on porcine sperm parameters in vitro, J. Androl. 30 (2009) 317–324, http://dx.doi.org/10.2164/jandrol.108.006478.
- [21] H.D. Guthrie, G.R. Welch, Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in percoll-treated viable boar sperm using fluorescence-activated flow cytometry, J. Anim. Sci. 84 (2006) 2089–2100, http://dx.doi.org/10.2527/jas.2005-766.
- [22] N. Virji, R. Eliasson, LDH-C4 in human seminal plasma and testicular function. III. Relationship to other semen variables, J. Androl. 8 (1985) 376–384.
- [23] S. Passarella, E. Marra, S. Doonan, E. Quagliariello, Uptake of malate dehydrogenase into mitochondria in vitro. Some characteristics of the process, Biochem. J. 210 (1983) 207–214.
- [24] M.L. Pallotta, D. Valenti, M. Iacovino, S. Passarella, Two separate pathways for D-lactate oxidation by Saccharomyces cerevisiae mitochondria which differ in energy production and carrier involvement, Biochim. Biophys. Acta Bioenerg. 1608 (2003) 104–113, http://dx.doi.org/10.1016/j.bbabio.2003.10.008.
- [25] A.R. Jones, Metabolic activity of hypotonically treated mature boar spermatozoa, Reprod. Fert. Dev. 9 (1997) 583–586, http://dx.doi.org/10.1071/ R97048.
- [26] G. Kamp, J. Lauterwein, Multinuclear magnetic resonance studies of boar seminal plasma, Biochim. Biophys. Acta 1243 (1995) 101–109, http:// dx.doi.org/10.1016/0304-4165(94)00117-G.
- [27] A.R. Jones, Metabolism of lactate by mature boar spermatozoa, Reprod. Fertil. Dev. 9 (1997) 227–232, http://dx.doi.org/10.1071/R96102.
- [28] T.H. Hereng, K.B.P. Elgstøen, F.H. Cederkvist, et al., Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa, Hum. Reprod. 26 (2011) 3249–3263, http://dx.doi.org/10.1093/humrep/der317.
- [29] P.E. Visconti, Sperm bioenergetics in a nutshell, Biol. Reprod. 87 (2012), http://dx.doi.org/10.1095/biolreprod.112.104109.
- [30] D.F. Babcock, N.L. First, H.A. Lardy, Transport mechanism for succinate and phosphate localized in the plasma membrane of bovine spermatozoa, J. Biol. Chem. 250 (1975) 6488–6495.

- [31] P.J. Oefner, G. Bonn, G. Bartsch, Isotachophoretic analysis of organic acids in human seminal plasma, Fresen. Z. Anal. Chem. 320 (1985) 175–178, http:// dx.doi.org/10.1007/BF00488684.
- [32] J.L. Bailey, Factors regulating sperm capacitation, Syst. Biol. Reprod. Mec. 56 (2010) 334–348.
- [33] J.C. Boursnell, S. Baronos, P.A. Briggs, E.J. Butler, The concentrations of zinc in boar seminal plasma and vesicular secretion in relation to those of nitrogenous substances, citrate, galactose and fructose, J. Reprod. Fertil. 29 (1972) 215–227
- [34] A. Agarwal, Measuring ΔΨm in isolated tubules, Am. J. Physiol. Ren. 288 (2005) F1090—F1091, http://dx.doi.org/10.1152/ajprenal.00030.2005.
- [35] S.M. Hutson, C. Van Dop, H.A. Lardy, Mitochondrial metabolism of pyruvate in bovine spermatozoa, J. Biol. Chem. 52 (1977) 1309—1315.
- [36] A. Schurr, R.S. Payne, Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study, Neurosci 147 (2007) 613–619, http://dx.doi.org/10.1016/i.neuroscience.2007.05.002.
- [37] A. Medrano, J.M. Fernández-Novell, L. Ramió, et al., Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa, Mol. Reprod. Dev. 73 (2006) 369–378, http://dx.doi.org/ 10.1002/mrd.20414.
- [38] W.C.L. Ford, A. Harrison, The role of oxidative phosphorylation in the generation of ATP in human spermatozoa, J. Reprod. Fert. 63 (1981) 271–278.
- [39] E. DeLamirande, C. Gagnon, A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa, Int. J. Androl. 16 (1993) 21–25. http://dx.doi.org/10.1111/i.1365-2605.1993.tb01148.x.
- 16 (1993) 21–25, http://dx.doi.org/10.1111/j.1365-2605.1993.tb01148.x.
 [40] I. Bize, G. Santander, P. Cabello, D. Driscoll, C. Sharpe, Hydrogen peroxide is involved in hamster sperm capacitation *in vitro*, Biol. Reprod. 44 (1991) 398–403, http://dx.doi.org/10.1095/biolreprod44.3.398.
- [41] J.F. Griveau, P. Renard, D. Le Lannou, An in vitro promoting role for hydrogen peroxide in human sperm capacitation, Int. J. Androl. 17 (1994) 300–307.
- [42] L. de Bari, D. Valenti, A. Atlante, S. Passarella, L-Lactate generates hydrogen peroxide in purified rat liver mitochondria due to the putative l-lactate oxidase localized in the intermembrane space, FEBS Lett. 584 (2010) 2285—2290, http://dx.doi.org/10.1016/j.febslet.2010.03.038.
- [43] S. Arnold, The power of life-Cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival, Mitochondrion 12 (2012) 36–56, http://dx.doi.org/10.1016/j.mito.2011.05.003.
- [44] N. Iaffaldano, M.P. Rosato, G. Paventi, et al., The irradiation of rabbit sperm cells with He-Ne laser prevents their in vitro liquid storage dependent damage, Anim. Reprod. Sci. 119 (2010) 123–129, http://dx.doi.org/10.1016/ i.anireprosci.2009.10.005.
- [45] N. Iaffaldano, G. Paventi, R. Pizzuto, et al., The post-thaw irradiation of avian spermatozoa with He–Ne laser differently affects chicken, pheasant and turkey sperm quality, Anim. Reprod. Sci. 142 (2013) 168–172, http:// dx.doi.org/10.1016/j.anireprosci.2013.09.010.
- [46] C. Mukai, M. Okuno, Glycolisis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement, Biol. Reprod. 71 (2004) 540–547, http://dx.doi.org/10.1095/biolreprod.103.026054.